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Multimedia Event Detection



GENIE 2013 System
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Oh, McCloseky, Kim, Vahdat, Cannons, et al, in MVA Special issue on Multimedia Event 
Detection, 2013. “Multimedia Event Detection with Multimodal Feature Fusion and 
Temporal Concept Localization”
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SRI Menlo Park)



MED Results

 MED 2013 / 2012
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- Results on MEDTEST ‘13

Intrinsic Performance of our system improved.



100 Ex Large-Scale Score Fusion
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Tang, Yao, Fei-Fei, Koller, ICCV 2013, “Combining 
the Right Features for Complex Event Recognition”



10 Ex Large-Scale Score Fusion
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Highlight: 0Ex Audio Bank (56 Concepts)
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Human Voice, Speech, 1 Person (Eng), Many (Eng), 1 Person (Not Eng), 

Many (Not Eng),    Other Human Voice,  Cheer, Yell or Scream, Cry, Laugh, 

Children or Babies,   Sing, Sing without BG music, Sing without BG music

Other Human Made Sounds, Hand or Foot, Footsteps, Clap,                    

Tool Sounds, Silverware or Dishware, Knocking on a Surface, Wood Colliding, 

Metal Colliding, Chopping, Sawing, 

Music, Album-like, With Voice, Instrument Only, Soft and Lyric, 

Heavy/Rock/Excited, Other Music Genre,                    

Animal, Dog, Cat, Horse, Bird, Beast Roar   

Machine Sounds, Light (Appliance, dishwasher), Strong (Electrical Saw, 

Driller), Motor Vehicle, Aircraft   

BG Sounds, Wind, Traffic, Crowd, Water, Weak Background Music, Alarm, 

Radio, Fry, Fire, Firecracker, Micro BLOW                    Noise



Highlight: 0Ex Audio
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Audio 0Ex Approach = Audio Bank + ASR 
Z. Huang, Y.-C. Cheng, K. Li, V. Hautamaki, and C.-H. Lee. In INTERSPEECH, 2013. 
“A Blind Segmentation Approach to Acoustic Event Detection Based on I-Vector”

• Flash Mob
• yell_or_scream, footsteps, music, strong (electrical saw, driller), alarm

• Birthday Party
• other_human_voice, cheer, yell_or_screem, laugh, sing (casual), clap

• Grooming an Animal
• animal, water
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MED Results
Online Demo
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Semantic Concepts

Where we are &
Attempts for next step



Scene Attributes

Patterson and Hays, CVPR 2012 12

102 Attributes



Random Selection

 Randomly selected frames from MED research set ( nearly 588, 
000 frames extracted from 10,000+ clips.)

13



Scene Attributes on MED dataset
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Scene Attributes on MED dataset

 Man-made
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Scene Attributes on MED dataset

 asphalt (only a few correct retrievals)
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Object Bank

 Li-Jia Li, Hao Su, Eric P. Xing and Li Fei-Fei, “Object Bank: A High-Level 
Image Representation for Scene Classification and Semantic Feature 
Sparsification”. NIPS, 2010.

 177 object detectors run at different scales over each frame

 Computed at key frames

 44604-d feature vector, reduced to 177-d by choosing max response per object 
type

 Max pooling over all frames

 L2 distance

17
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Object Bank on MED Dataset
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Object Bank on MED Dataset
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Object Bank on MED Dataset

 horse (detects animal or person)
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Towards 0Ex Challenges

 How many of visual semantics are reliable?

 Selected after manual reviews on MED images

• 107 Scene Attributes  30

• 177 Object Bank  21

 Source of Limitations

 Imperfect detectors

 Training dataset is not generalizable for MED

 Some concepts do not exist in MED

21



A Solution for Reliable Concepts

 Bottom-Up Concepts

 Identify concepts that are Easily detectable

• Simply cluster data

• Look at each cluster

• ‘Name it’ when it makes sense

 Paradigm shift from ‘Top-Down’ process

• Opposite of collecting training data up-front

• Manual annotation cost incurs at the end

• Advantage of actually ensuring detectability on your 
dataset

– No Transfer learning, and No dataset gap

 Forward Thoughts on Scalability

 How many concepts can be identified this way?

 How detailed concepts can be identified?

 This is an on-going research, but, it looks fairly promising.

22



Example Bottom-Up Concepts

Title / Caption

Circular Objects

Performance / Light Source

Group of People

Grass / Leaves

Face Close-up

Kim, Oh, Vahdat, Cannons, Perera, Mori, 
ACM MM 2013

Hands



Capturing Time-Varying Video Contents

using Bottom-Up Concepts
 We model general semantic concepts appearing in real-world videos

Example: “Making a sandwich”
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Segmental Multi-way Local Pooling

combined with Multiple Kernel Learning

Segment-level
features

Kernel per
temporal concept

𝐾1(𝑥, 𝑥
′)

𝐾𝑖(𝑥, 𝑥
′)

𝐾𝑀(𝑥, 𝑥
′)

…
…

Final Kernel via 
weighted Summation

across Concepts 
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Video clip: 𝑥
Example: Board Trick
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Segmental Multi-way Local Pooling for Video Recognition, 
Kim, Oh, Vahdat, Cannons, Mori, Perera. ACM Multimedia ‘13. 



0Ex Challenges

 Detector scores

 Mostly classifier outputs 

• SVM margins, or transformations

 Mostly used to rank images/videos

 Intrinsic meaning of scores are not well-defined

• Semantic concept classifier scores can be difficult to 

understand and do not convey true uncertainty to the 

users.

 Combining concept scores is an open issue

 Even, estimating relative strength of multiple concepts on a 

single input

26



Semantic Concept Score Calibration

 Goal is to translate the scores into 
values that are meaningful w.r.t to 
observed semantics.

 Calibration Process
 Apply the concept classifiers to the data.

 Smart sampling of images spanning the 
complete range of scores. (We sampled ~500 
images per-classifier out of ~588, 000 frames 
extracted from > 10,000 videos.)

 Manually annotate images w.r.t. relevance of 
targeted concepts.

 Estimate precision.

 Map raw score to estimated precision value.

27
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Semantic Concept Score Calibration

Randomly sample 20 images with tree score > 
threshold (from 100,000+ images)

score > 0.5 score > 0.3 score > 0.2

55% correct retrievals 30% correct retrievals 25% correct retrievals

28



Semantic Concept Score Calibration

29

Precision Curves Computed from 
Annotated Images

Score Transformation



Calibrated vs. Raw Scores: Qualitative Comparison

• Zero shot search (correct retrievals are marked in green)

 Query: no horizon AND snow

Calibrated Scores Raw Scores

30



Calibrated vs. Raw Scores: Qualitative Comparison

 Zero shot search (correct retrievals are marked in green)

 Query: socializing AND vegetation AND natural light

Calibrated Scores Raw Scores

31
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0 Ex
Online Demo
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Multimedia Event Recounting



MER Framework
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P. Das, C. Xu, R. F. Doell, and J. J. Corso. CVPR ‘13
“A thousand frames in just a few words: 
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For Official Use Only

E009 Getting a vehicle unstuck -- HVC701860

 HOG3D_Global_20000_FasterKMeans_xy=9_t=5

 drive jeep

 HOG3D_Global_4000_xy=9_t=5_Horiztonal_3

 back camera field push they 
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For Official Use Only

E009 Getting a vehicle unstuck -- HVC701860

 op_DenseSIFT

 back mud pull she woman 

 op_geo_color

 driver jeep mud pickup sand sedan there video

 op_hog2x2

 it wheel 
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For Official Use Only

E009 Getting a vehicle unstuck -- HVC701860

 op_spsift_hesaff

 camera drive mud vehicl

 op_spsift_mser

 small then they

 op_ssim
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For Official Use Only

E009 Getting a vehicle unstuck -- HVC701860

 OBDScale

 coral 

 OBD_Avg

 chair 
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For Official Use Only

E009 Getting a vehicle unstuck -- HVC701860

 OBD_Max_Level_3_Horz

 train, railroad train 

 OBD_Max_Temporal_2

 coral 
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For Official Use Only

E022 Cleaning an appliance -- HVC782499

 op_spsift_hesaff

 cloth demonstr microwav open refriger servic

 op_spsift_mser

 back brushe clothe end front interview iron move place return rust start tunnel 
wash women 

 op_ssim
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E022 Cleaning an appliance -- HVC782499

 HOG3D_Global_20000_FasterKMeans_xy=9_t=5

 cloth scrub shot vacuum wipe

 HOG3D_Global_4000_xy=9_t=5_Horiztonal_3

 applianc door kitchen repair shot show water 
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E022 Cleaning an appliance -- HVC782499

 op_DenseSIFT

 applianc kitchen microwav open refriger woman

 op_geo_color

 compani door he open oven shot tray video

 op_hog2x2

 custom door open process refriger repair stand tray
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MER Results
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Summary

 TRECVID community is making impressive progress on solving 
multimedia event detection

 100 Ex works well for many event types

 10 Ex is the next real challenge, which is gradually being 
addressed.

 Search by Semantics (0Ex) is still challenging

 Our attempts to improve 0Ex include:

 Bottom-Up Concepts

 Score Calibration

 Our MER incorporated

 Feature-to-text translation

 Discriminative Image selection

 Fusion of results across multiple base classifier is the next step.

44



Thanks!

This work is supported by the Intelligence Advanced Research Projects Activity (IARPA) 
via Department of Interior National Business Center contract number D11PC20069 and 
by the Defence Advanced Research Projects Agency (DARPA) under contract number 
HR0011-08-C-0135. The U.S. Government is authorized to reproduce and distribute 
reprints for Governmental purposes notwithstanding any copyright annotation thereon. 
Disclaimer: The views and conclusions contained herein are those of the authors and 
should not be interpreted as necessarily representing the official policies or 
endorsements, either expressed or implied, of IARPA, DoI/NBC, DARPA, or the U.S. 
Government.

45


